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Abstract. The effective mass of the Fröhlich polaron model ind spatial dimensions is obtained
within the Gaussian-equivalent representation, that is, within a suitably rearranged perturbative
path-integral approach, whose leading order already takes care of all Gaussian fluctuations. In
doing so, the authors extend their earlier investigations (Phys. Rev.B 50 3733 (1994)) of the
polaron ground-state energy. Analytical expressions for the effective mass are derived in the
weak- and strong-coupling limit. In the intermediate-coupling regime, the effective mass is
calculated numerically for the cases of two and three dimensions. The new results are compared
with previously known data.

1. Introduction

The polaron concept introduced by Landau [1] is devoted to the interaction of an electron
placed in a polar or ionic crystal [2, 3]. The resulting interaction with the phonons of
longitudinal optical lattice vibrations is typically modelled by a Hamiltonian due to Fröhlich
[4], containing a dimensionless coupling constantα > 0. Fr̈ohlich’s Hamiltonian has been
the subject of a huge number of theoretical investigations, for review-type literature see
[5]–[10]. In more recent years the properties of polarons confined to two spatial dimensions
(d = 2) have also attracted considerable interest [11, 12].

Quantities of interest are the ground-state energy (GSE), the effective mass (EM), and
some other quasi-particle characteristics of the Fröhlich polaron. Typically, exact results are
available only in the limiting cases of weak coupling (α→ 0) and strong coupling (α→∞).
While the weak-coupling results may be obtained by conventional perturbation expansions,
rigorous proofs of the strong-coupling behaviour require more advanced techniques [13]–
[17], reflecting the qualitative difference between the polaron states in the two limits.

Among the approximations which are believed to describe the polaron characteristics
reasonably well for all values ofα, Feynman’s celebrated path-integral approach [18] stands
out in that it smoothly interpolates between the weak- and the strong-coupling regime. It is
based on a two-parameter trial action functional representing a retarded harmonic oscillator.
Later this variational approach was generalized to two [19], more than two [20, 21], and
even to a continuum of such oscillators [22, 23].
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In our previous investigations we estimated the GSE of the Fröhlich polaron in three
[24] andd > 2 dimensions [25, 26] within a rearranged perturbative path-integral approach,
where the leading order takes into account all Gaussian fluctuations of the polaron in its
ground state and higher orders systematically correct for non-Gaussian contributions. In
[25, 27] this approach is called theGaussian-equivalent representation(GER). Similar to
the treatment of certain models of quantum field theory this approach does not require
the smallness of the coupling constant. Not surprisingly, we have found that our leading-
order term ford = 3 gives the same upper bound to the GSE as was obtained in [23].
The resulting upper bounds to the GSE turned out to improve Feynman’s estimate only
slightly. Nevertheless, the numerical values of [23, 25] belong to the lowest ones available.
Moreover, it has been shown [28] that results based on this action, when suitably extended
to d dimensions, become asymptotically exact in the limitd →∞.

We have also calculated in [25] the next-to-leading non-Gaussian correction to the GSE
for both thed = 3 and thed = 2 case for arbitrary couplingα > 0. In the weak- and
strong-coupling limits, where exact answers were available for comparison, we have found
definite improvements over the Gaussian approximation for the GSE.

Among the unanswered questions in [22]–[25] are the following three. First, what is
the quantitative difference between the masses obtained within the Feynman and the general
Gaussian approaches? Second, what can be said about the corrections which arise when
going beyond the general quadratic action? And third, which results can be obtained when
the approach is extended to two dimensions (d = 2)?

The purpose of the present paper is to extend our earlier investigations to the EM. In
doing so, the general formulation of the GER will be given for arbitrary values of the
dimensiond. For explicit results we concentrate on the physically relevant cases ofd = 3
andd = 2. In this sense we partially answer all the questions above.

The paper is organized as follows. The basic formalism is developed in section 2. Here
we briefly review the path-integral approach to the EM of the Fröhlich polaron (embedded)
in d dimensions. In section 3 we derive and discuss the leading-order term of the EM. The
next-to-leading order is evaluated in section 4. In section 5 we will compare our analytical
and numerical results with previously obtained data for the polaron EM in two and three
dimensions.

2. Polaron path integral within the GER method

The Hamiltonian operator of the Fröhlich polaron model is:

H = p
2

2
+
∑
k

a
†
kak +

1√
�

∑
k

gk
(
a
†
ke−ikr − akeikr

)
(1)

where,p and r denote the momentum and position operators of the electron,� is the
quantization volume, andk, ak and a†k are the wavevector, annihilation and creation
operators of a phonon. Here we are using appropriate units, such thatmB = ω = h̄ = c = 1,
wheremB is the electron bare mass,ω denotes the frequency of the LO-mode of lattice
vibrations. The electron–phonon coupling factorgk = i(4πα)1/2/|k| is characterized by the
dimensionless coupling constantα. All the vectors in (1) are three dimensional.

To extend the consideration to arbitrary spatial dimensions (d > 2) we redefine the
coupling factor as follows [25] (see also [29]):

|gk|2 := (2π)d3d α/ |k|d−1 3d := 0[(d − 1)/2]/
√

8π(d+1)/2. (2)
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The linear character of the electron–phonon coupling in (1) allows one to integrate over
the phonons in the path-integral (PI) formulation. The free energyF(α, β) of the polaron
at temperature(1/kBβ) may then be found in the following way

e−βF(α,β) =
∫

r(0)=0

Dr δ(r(β)) eα 8β(r)

8β(r) := 1√
8

β∫
0

∫
dt ds

e|t−s| + eβ−|t−s|

(eβ − 1)|r(t)− r(s)| (3)

where Wiener’s functional path measure is heuristically given as follows:

Dr ∝ δr exp

−1

2

β∫
0

dt ṙ2(t)


∫

r(0)=0

Dr · 1= 1. (4)

The GSE of the system is the zero-temperature limit:F(α, β) −→
β→∞ E(α).

The advantage of the PI formulation is obvious: the original many-body problem has
been transformed into an effective one-particle model, with just the electron coordinate
r(t). On the other hand, one obtains in (3) an effective action which is nonlocal in time and
has a Coulomb-like singularity that—up to now—has prevented any further exact analytic
treatment except in the limitsα→ 0 andα→∞.

The EM of the polaron may be defined in different ways. We follow the standard
definition by using an expansion of the real part of the self-energy with respect to small
momentum (see, e.g., [30]). For this purpose, we introduce the polaron partition function
projected at small fixed momentump as follows:

e−βF̃(p,α,β) :=
∫

r(0)=0

Dr e−ipr(β) eα 8β(r) =
∫

dx e−ipx e−βF(x,α,β)

e−βF(x,α,β) :=
∫

r(0)=0

Dr δ(x− r(β)) eα 8β(r). (5)

For zero coupling it becomes

e−βF̃(p,0,β) = e−
β

2p
2

(6)

which can inspire one to find the effective mass of the polaron as follows:

m∗(α) := d
(
∂2 limβ→∞ F̃(p, α, β)

∂p2

∣∣∣∣
|p|=0

)−1

. (7)

This definition obeys the conventional normalization conditionm∗(0) = 1 and is in
agreement with (6). Furthermore, it is convenient to change the variables of integration
to r(t) 7→ r(t)+ xt/β in (5).

The path integral (5) is the central quantity of the present paper. To evaluate it we
use the GER method which has previously been applied successfully to the polaron GSE
[25, 26] and to other problems in quantum physics [27]. The key idea of our approach is a
representation which isolates the most general Gaussian part in PIs, including (5). Within
this approach one is able to describe the ground state of the system more precisely by
introducing a new Gaussian measure dσ(r) instead of the original measureDr. This goal
is achieved through a canonical transformation which is constrained by the requirements that
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the interaction part of the polaron action should be rewritten in normal-ordered form and
must not contain linear and quadratic path configurations (we call this formcorrect). These
requirements lead to the equations governing the possible form of the Gaussian measure
dσ .

As a result the PI (5) may be rewritten as

e−βF(x,α,β) = e−βFG(x,α,β)Jβ(α,x) (8)

where theleading-order Gaussian approximationis defined as follows:

e−βFG(x,α,β) := exp

{
−x

2

2β
+ 1

2
ln det(D−1

o ,D)

− 1

2
([D−1

o −D−1],D)+ α
2

∫
d� exp

(
ikx

t − s
β

)}
. (9)

Here and in the following we use the notation∫
d�(. . .) := 3d

β∫
0

∫
dt ds exp(−|t − s|)

∫
dk

|k|d−1
exp

{−k2F(t − s)} (. . .)
(A,B) :=

β∫
0

dt A(t) B(t) ex2 := ex − 1− x − x2/2 αd := α3
√
π 0[(d − 1)/2]

2d 0[d/2]
(10)

whereαd plays the role of are-scaledcoupling constant depending on the spatial dimension
number d. The relation between the re-scaled and physical coupling constants are
α2 = 3πα/4 andα3 = α in two and three dimensions, respectively.

The non-Gaussian correctionsto (9) should be obtained by evaluating the following
new PI

Jβ(α,x) :=
∫

dσ exp

{
α

2

∫
d� exp

(
ikx

t − s
β

)
: eik(r(t)−r(s))

2 :

}
(11)

dσ ∝ δr exp

−1

2

β∫
0

∫
dt ds r(t)D−1(t, s)r(s)


∫

dσ · 1= 1

where the symbol : : denotes ‘normal-ordering’ with respect to the general Gaussian measure
dσ defined on paths which start and end at the origin:r(0) = r(β) = 0. For β →∞, the
adjustable functionF(t) = D(0)−D(t) has to be derived from the following set of integral
equations:

6̃(k) = 1

3
√

2π

∞∫
0

dt exp(−t) 1− cos(kt)

F 3/2(t)

F (t) = 1

π

∞∫
0

dk
1− cos(kt)

k2+ αd6̃(k)
. (12)

The Fourier transform ofD(t) is given by

D̃(k) = 1

k2+ αd6̃(k)
. (13)

One should note that̃D(k) has the typical form of the propagator of a scalar particle, but
with a k-dependent mass equal toµ = [αd6̃(k)]1/2.
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A generalization of equations (12) has been obtained previously by the authors [31]
for a quantum-field model with a general actionW [ϕ]. In [24] it is shown that this
generalization indeed turns into (12), when specialized to the three-dimensional polaron.
To our knowledge, an equivalent form of these integral equations, extracting the complete
quadratic part of the polaron ground-state, has been obtained previously, e.g. in [23] for
d = 3, by considering the stationarity condition for an extension of Feynman’s variational
approach to general quadratic trial actions. This idea was proposed independently also in
[22]. Note also that the same equations govern the leading term of a 1/d-expansion scheme
applied to the polaron model [28].

3. Gaussian approximation to the polaron mass

Up to now the PI (5) has not been evaluated explicitly. Various approximation methods
have therefore been developed. We first consider the zero-temperature limit of (5) in the
Gaussian (leading-order) approximation of the GER method, that is

e−βFG(x,α,β) −→
β→∞ exp

{
−βEo(α)− x

2

2β
[1+Mo(α)]

}
(14)

Mo(α) := lim
β→∞

α

2βd

∫
d�k2 (t − s)2 = αd

2

∂26̃(p)

∂p2

∣∣∣∣
p=0

.

The Gaussian approximationEo(α) to the GSE has been obtained previously in [25]. It gives
an upper bound to the exact polaron GSE, which slightly improves Feynman’s celebrated
estimate. Using the right-hand side of (14) as an approximation in (5) and (7), we obtain
the Gaussian leading-order EM of the polaron ind dimensions as follows:

m∗o(α) = 1+Mo(α) = 1+ αd

6
√

2π

∞∫
0

dt t2
exp(−t)
F 3/2(t)

. (15)

Again, the adjustable functionF(t) in (15) is the solution of equations (12). The following
four remarks are in order.

i. Exact analytic solutions to (12) are available in the weak- and strong-coupling limits:

F(t) =
{
t/2−O(αd) α→ 0[
1− exp(−v∞t)

]
/2v∞ v∞ := 4α2

d/9π α→∞. (16)

Note that these solutions correspond to the propagator (13), but with fixed massesµ = 0
andµ = v∞, respectively. Corresponding solutions for the EM are given in section 5.

ii. For intermediate-coupling (α ≈ 1), equations (12) seem to admit no analytic solutions.
Nevertheless, any strictly positive function can be used instead ofF(t) to derive an
approximation to the GSE and the EM following the lines of the Gaussian approximation.
The result, however, will in general be inferior to the one corresponding toF(t). For
example, Feynman’s celebrated variational model can be recovered, if one chooses a convex
combination

F1(t) := wo t
2
+ (1− wo)1− exp(−vt)

2v
(17)

of the two known asymptotical solutions (16) instead ofF(t). The stronger the interaction,
the smaller the weight factorwo := (w/v)2 6 1 should be. Optimizing the two parameters
{w, v} reproduces Feynman’s upper boundEF (α) to the GSE. Corresponding substitution
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of the optimalF1(t) into (15) results in Feynman’s massm∗F (α). Note, however, that (17)
is not a solution of equations (12).

iii. An obvious improvement of the Feynman approximation can be obtained by convex
combining more strong-coupling components to (17)

FN(t) = wo t
2
+

N∑
i=1

wi
1− exp(−vit)

2vi
N > 2. (18)

Optimization withN = 2,N = 3 andN = 8 reproduces the data obtained in [19], [20] and
[21], respectively. The limiting caseN →∞ leads, obviously, to the results of the general
quadratic action [23].

iv. Due to certain features of the functionsF(t) and 6̃(k) shown in [25], it is possible
to obtain the Gaussian leading-order mass for two dimensions in terms of that for three
dimensions by rescaling the coupling constant. More precisely,

m∗(2)o (α) = m∗(3)o (3πα/4) . (19)

For the special case of Feynman’s approximation this has been observed previously [12].
Analytical and numerical derivations tom∗o(α) obtained ford = 2 and d = 3 are

discussed in section 5.
Unfortunately, in contrast to the case of the GSE, where a simple minimum criterion

for the optimal solution exists for generalα, there is no such criterion for the sign of the
sum of all non-Gaussian corrections to the Gaussian leading-order EM. For example, the
Gaussian approximationEo(α) gives an upper bound to the true GSE, but this is not true
for m∗o(α).

4. Non-Gaussian corrections to the polaron mass

The exact mass of the polaron differs from the Gaussian leading-order approximationm∗o(α)
becauseJβ(α,x) 6= 1 in (8). This difference disappears only in nonphysical high dimensions
Jβ(α,x) −→d→∞ 1 due to the weakening of the re-scaled couplingαd −→d→∞ 0. For physically
meaningful cases,d 6 3, a more precise estimate for (11) is required.

In this section we restrict ourselves to thesecond-ordernon-Gaussian corrections to the
EM. In doing so, we derive the following expression:

Jβ(α,x) = 1− β1E2(α)− x
2

2β
1M2(α)

= 1+ α
232

d

8

β∫
0

∫
dt ds

β∫
0

∫
dx dy e−|t−s|−|x−y|

×
∫

dk

|k|d−1

∫
dp

|p|d−1
exp

[−k2F(t − s)− p2F(x − y)]
× exp

(
ikx

t − s
β
+ ipx

x − y
β

)
ekp·4(t,s,x,y)2 (20)

where a four-point correlation function4 has been introduced:

4(t, s, x, y) := F(t − x)+ F(s − y)− F(s − x)− F(t − y). (21)
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Omitting the details of the calculations we write the final result for the non-Gaussian
correction to the leading-order mass as follows:

1M2(α) = 4α2
d d 0[d/2]

9π3/20[(d − 1)/2]

1∫
0

dξ(1− ξ2)
d−3

2

∞∫
0

dz1

∞∫
z1

dz2

∞∫
z2

dz3

{
e−z3−|z1−z2|

×
[

[F(z2− z3)z
2
1 + F(z1)(z2− z3)

2]

(
1

[4F(z1)F (z2− z3)− ξ242]3/2

− 1

[4F(z1)F (z2− z3)]3/2
− 3ξ2

2

42(z1, z2, z3, 0)

[4F(z1)F (z2− z3)]5/2

)
+ ξ2 z1 (z2− z3)4(z1, z2, z3, 0)

(
1

[4F(z1)F (z2− z3)− ξ242]3/2

− 1

[4F(z1)F (z2− z3)]3/2

)]
+ (z1↔ z2)+ (z1↔ z3)

}
. (22)

In particular, ford = 3 the integration overξ in (22) can be performed explicitly.
Finally, taking into account both the Gaussian leading-order and the second-order non-

Gaussian contribution we estimate the polaron effective mass as follows:

m∗(α) = m∗o(α)+1M2(α). (23)

5. Analytic and numerical results

Both the Gaussian leading-order mass and the second-order non-Gaussian correction may
be derived analytically for the weak- and strong-coupling limits. For intermediate coupling,
equations (12), and hence, the massesm∗o(α) and1M2(α) will be evaluated numerically.

5.1. The weak-coupling limit

The exact results using fourth-order perturbation theory [12, 32, 33, 34] for the polaron EM
are:

m∗(α) =
{

1+ (π/8) α + 0.1272348α2+O(α3) d = 2
1+ (1/6) α + 0.02362763α2+O(α3) d = 3.

(24)

The coefficient of theα2 term of the Feynman polaron mass overestimates the exact value
by 7.8% and 4.5% ford = 2 andd = 3. The second-order correction to the Feynman result
[30] for d = 3 fits the correct behaviour in (24).

Knowing explicitly the weak-coupling behaviour ofF(t) (see [25]) we derive the
leading-order Gaussian contribution to the polaron mass:

m∗o(α) =
{

1+ (π/8) α + (3π2/32− π/4) α2+O(α3) d = 2
1+ (1/6) α + (1/6− 4/9π) α2+O(α3) d = 3.

(25)

Considering the second-order non-Gaussian correction, it is sufficient to use the
asymptotic solutionF(t) = t/2 because the neglected termO(αd) will generate a mass
correction proportional toO(α3

d). Thus we obtain

1M2(α) =
{
(1/8)

[−5+ 9π2 (19/6π − 1) /8+ 4C1
]
α2+O(α3) d = 2

(1/36− 5/4
√

2+ 4/9π + 4 ln(1+ 1/
√

2)/3) α2+O(α3) d = 3
(26)
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where

C1 :=
1∫

0

dx
1+ 6x2− 6x4+ 4x6

√
1− x2 (1+ x2)7/2

arctan

√1+ x2

1− x2

 = 1.202560452. . ..

Adding (26) to (25) we obtain

m∗(α) =
{

1+ (π/8) α + 0.127234835α2+O(α3) d = 2
1+ (1/6) α + 0.0236276301α2+O(α3) d = 3.

(27)

Our final results (27) for the weak-coupling polaron mass are in complete agreement with
previously known data obtained within perturbation [12, 33, 34] and 1/d-expansion [35]
methods.

5.2. The strong-coupling limit

For α → ∞, exact results for the polaron EM are available within Pekar’s adiabatic
approximation [15, 17, 36, 37]:

m∗(α) =
{

0.7328α4+O(1) d = 2
0.022702α4+O(1) d = 3.

(28)

As α becomes very large,F(t) behaves as in (16). By using this asymptotical solution,
we derive

m∗o(α) =
{
(π2/16) α4+O(1) d = 2
(16/81π2) α4+O(1) d = 3.

(29)

One can see that the leading-order Gaussian massm∗o(α) for α → ∞ behaves similarly
to corresponding results due to Feynman’s and the 1/d-expansion methods. These results
underestimate the corresponding exact ones [36, 37]. This is probably due to the fact that for
increasingα the nonlocal Coulomb-like polaron self-interaction is less well approximated
by an oscillator-type term used for our leading-order mass.

The second-order non-Gaussian corrections become:

1M∗2(α) =
{

0.065027α4 d = 2
(64{ln[4(2−√3)] − 1/16}/27π2) α4 d = 3.

(30)

Finally we get:

m∗(α) =
{

0.681878α4+O(1) d = 2
0.021656α4+O(1) d = 3.

(31)

This underestimates Pekar’s adiabatic solutions by 6.9% and 4.6% in two and three
dimensions, respectively. Hence, higher-order non-Gaussian corrections are required to
fill this gap.

5.3. The intermediate-coupling range

For intermediate coupling we have solved equations (12) numerically by means of an
iterative procedure starting from (17) as the first approximation. We have checked that
different numbers of iteration steps and cutoff points for numerical integration do not
influence the final results within the given accuracy.

The intermediate-coupling results obtained for the Gaussian leading-order massm∗o(α)
and the corrected massm∗(α) for d = 2 and d = 3 are presented in tables 1 and 2,
respectively, compared with known data.
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Table 1. The present results for the two-dimensional polaron effective mass in the intermediate-
coupling range ofα compared with the data obtained within the Feynman model.

α m∗F m∗o m∗

0.5 1.23762 1.23854 1.23456
1.0 1.59971 1.60469 1.58370
2.0 3.40873 3.44773 3.26923
3.0 15.2066 15.2215 14.1534
4.0 81.1692 81.0063 80.3848
5.0 257.453 257.302 266.300
7.0 1217.64 1217.55 1304.18
9.0 3603.70 3603.65 3910.61

11.0 8362.91 8362.87 9132.64
15.0 29974.8 29974.8 32921.9

Table 2. The present results for the three-dimensional polaron effective mass in the intermediate-
coupling range ofα compared with known data.

α m∗F m∗LR [30] m∗GLS [38] m∗AR [39] m∗Lar [40] m∗o m∗

0.5 1.08999 — — — — 1.09013 1.08970
1.0 1.19551 1.19408 1.196 1.1942 1.19146 1.19615 1.19423
3.0 1.88895 1.86818 1.900 1.824 1.7229 1.89862 1.87007
5.0 3.88562 3.76384 3.940 3.30 2.3543 3.93259 3.76961
6.0 6.83836 — — — — 6.90814 6.53710
7.0 14.3941 13.7277 — 10.3 — 14.4162 13.6535
9.0 62.7515 62.0588 — — — 62.5987 61.7556

11.0 183.125 186.724 — — — 182.964 186.453
15.0 797.499 837.039 — 820.0 — 797.391 837.073
20.0 2809.14 2990.02 — — — 2809.07 2990.18
30.0 15311.8 16451.8 — — — 15311.7 16451.5
40.0 49627.5 — — — — 49627.5 53488.7

The scaling feature (19) form∗o(α) allows us to depict both two- and three-dimensional
Gaussian leading-order masses by only one curve in figure 1. Actually, this is true for any
d > 2. In doing so, we plot our two-dimensional results scaled by a factor ofαd/α = 3π/4
in the horizontal (α-axis) direction. Data cited as Feynman’s in tables 1 and 2 have been re-
obtained by us to cover more data sets. To show the deviation of all results from Feynman’s
more clearly, we have plotted them only after first dividing by Feynman’s values. The results
of the fourth-order perturbation theory and the adiabatic strong-coupling model extrapolated
to the intermediate-coupling region 1< αd < 10 have not been plotted due to their relative
large deviations from Feynman’s result.

The difference between Gaussian and Feynman’s masses reaches 1.2% atαd ≈ 5 for any
d > 2, vanishing for very small and very largeαd . Note that forαd ≈ 7 the leading-order
Gaussian massm∗o(α) converges tom∗F (α). For αd < 7 m∗o(α) is larger thanm∗F (α), and
vice verse forαd > 7.

Taking into account non-Gaussian corrections to the EM breaks the scaling feature (19)
and the deviation of the corrected mass from Feynman’s result (and from Gaussian, too) for
d = 2 is larger than ford = 3. This is becauseαd decreases asd →∞. The smaller the
spatial dimension, the more important are non-Gaussian corrections. One can observe that
nearαd ≈ 10 the second-order non-Gaussian correction vanishes because this correction
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Figure 1. Effective mass of the two- and three-dimensional polaron normalized to the Feynman
variational result as a function of the re-scaled electron–phonon coupling constantαd . The short-
dashed curve represents our leading-order Gaussian massm∗o(αd) obtained for spatial dimension
d > 2. The solid and long-dashed curves depict our corrected massm∗(α) for d = 2 andd = 3,
respectively. For comparison, some three-dimensional results are shown: rhomba and squares
denote Monte Carlo data from [39] and [38]; stars correspond to results from [40]; asterisks
show the corrected Feynman result from [30]; and up and down triangles depict lower and upper
bounds due to the Ṕade scheme [43].

was negative for smallαd and positive for largeαd .
Clearly, the corrected massm∗(αd) does not converge to the Feynman result for

αd →∞. In this limit m∗(α) differs from the exact (adiabatic) result by 7.4% (or, 4.8%)
for d = 2 (d = 3), while Feynman’s massmF (α) differs by 18.8% (13.4%). From the
analyses of weak- and strong-coupling results it can be deduced that the exact EM of the
polaron must be belowm∗F for small coupling, and abovemF (α) for large coupling. Our
leading-order Gaussian massm∗o(α) does not exhibit such a behaviour, but the corrected
resultm∗o(α) is in agreement with this result.

Comparing our results in the intermediate-coupling range to that of other approaches
we note that our method works well in a unique way in the whole range ofα and for
both two and three dimensions. It does not require extensive numerical calculations on
supercomputers, but is able to give reliable and consistent results rather quickly. Our
results are more accurate than those obtained in [41] only forα < 3. A Monte Carlo
method based on partial averaging of the high-order Fourier coefficients [39] improves the
Feynman variational mass for a restricted regionα < 7 but has a large systematic error and
has required several thousand hours of super-computer time. The reported inaccuracy due
to the treatment of the Coulomb singularity [42] or due to the considerable accumulation
of statistical errors [41] does not appear in our approach. Moreover, since the ground-state
characteristics only follow forβ → ∞, the simulation results obtained for finiteβ < ∞
have to be extrapolated accurately. There exists another type of approach to construct
interpolation algorithms based on the known asymptotical (α→ 0 andα→∞) behaviours
of the EM. Various attempts have been made in this direction [43, 44], although they
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definitely need more expansion coefficients to achieve acceptable reliability.
However, we would like to point out that our present results should also be improved.

First, in the weak-coupling limit, our Gaussian leading-order massm∗o(α) overestimates
slightly the result of the fourth-order perturbation method and the Feynman result. Although
the last difference is very small, about 2% in the coefficient ofα2, ourm∗o(α) surprisingly
deviates from the exact perturbative result more than Feynman’s two-parameter approach;
consider that our leading-order Gaussian approximation for the GSE [25] surpassed the
Feynman approach in the same region. However, the next non-Gaussian correction1M∗2(α)
compensates exactly this gap and we obtain for the final massm∗(α) complete agreement
with conventional higher-order perturbation theory [33, 34, 22] in both two and three
dimensions. The observation is that the GER method describes the EM worse than the
GSE to leading order forα � 1.

On the other hand, forα � 1, we see that there is still a need for higher-order corrections
beyond1M∗2(α). A similar picture has been noticed earlier [24] for the GSE.

6. Conclusion

To summarize, we have evaluated the effective mass of the polaron ind > 1 dimensions
within and beyond the general Gaussian approximation in the weak-, strong- and
intermediate-coupling regimes. For this purpose, we have utilized the GER method, that
is, a rearranged perturbative path-integral approach, where the leading order takes into
account all Gaussian fluctuations of the polaron in its ground state and higher orders correct
systematically for non-Gaussian contributions. Actually, we have shown that the Gaussian
leading order can serve as a source of various approximations, including, in particular,
Feynman’s early variational approach. We have found that the Gaussian leading-order
approximation to the mass lies not too far from that of Feynman, being within 1.3% for any
spatial dimensiond > 2. The second-order non-Gaussian correction changes the previous
result for different valuesd of the spatial dimension parameter. Ford = 2 andd = 3 these
changes are about 7% and 5%, respectively, for intermediateα. The corrected mass for
d = 3 lies close to the analogously corrected Feynman result [30], but differs considerably
from some Monte Carlo results [38, 39]. The present data for intermediateα (shown in
table 1) obtained ford = 2 are new and may serve as a standard of reference for the
two-dimensional polaron mass. It can be expected that the totality of all non-Gaussian
corrections beyond second order will not dramatically change the obtained results.
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